# **Visual and Thermal Imaging** An Imaging Component of the Precision Ag Toolkit



**Jim Etro** 

jim@crop-vu.com

703-489-8507



## **Precision Agriculture**

### is spatial and temporal

Precision Agriculture enables a detailed view and understanding of the crop as it is growing so that it can be managed affordably.

## **Tools of the Trade**

High Fidelity Sensing and Analyses Precise Positioning - GIS Precise Machines

An Agronomist in the Field

### **Precision Leads to Increased Margins**



**In Soil** 

### **High Fidelity Sensing**

Water Coming Out (Artists conception)

(Seal)

(Pressure Gauge)

USGS Global Visualization Viewer

-121.0 36.0

Max Cloud 0 100% ne Information LE70430352009160EDC ud Cover: 33% Olty: 9 te: 2009/6/ - 2009 -Next Scene

Prev Scene L7 SLC-off (2003->) List

Û

lution Map Lavers Tools File He

≈US65

Mag

Air P

### In Plant & Near Plant

### **Aircraft & Satellite**

dd Del Submit Download at the temporal and spatial scale of the plant



### Applying Imaging at the temporal and spatial scale of the plant

#### **Provides the information needed for making agricultural decisions.**

- Disease and Pest and Irrigation Scouting/Assessment
- Help Guide Management of Water & Amendments & Herbicides & Pesticides
- Canopy Management
- Life Cycle Mapping

Follow Growth Mapping for Variable/Precision Harvest Operations

- Direct Resources (Labor/Water/Amendments/Herbicides/Pesticides)

# To be at the temporal and spatial scale of the plant the imagery must be:

High Resolution On-Demand

### Affordability!!!



# Remote Sensing & Analysis by Visual Imaging using NDVI





# Remote Sensing & Analysis

by Imaging

### <u>Visual</u> – sensing reflected energy

and the state of



#### <u>Near-Infrared</u> – sensing reflected energy





### **The Imaging Spectrum**



# **Thermal** *Regulation* in Isohydric Plants



# Vineyard Thermal Observations

#### As the day progresses the canopy warms to a 'comfortable' range.

- Near sunrise, healthy grapevine canopy temperatures tend to be within a few degrees of the ambient air temperature.
- As the day progresses canopy temperatures warm so that during the middle of the day the healthy canopies reach a range of temperatures between 83°F and 91°F.
- Day-time temperature range is maintained even when the ambient air temperatures are as much as 10°F lower than the canopy temperature and when the ambient air temperatures are as much as 15°F higher than the canopy temperature.

## As the canopy fills out **canopy temperatures are inverse to the vigor** (greenness).

- relatively cool temperatures inversely proportional to high vigor patterns.
- Relatively warmer temperatures are normally reflected in relatively lower vigor patterns.
- When high vigor warmer temperatures is usually the signature of stress.
- the pattern over the extant of the field leads one to understand if it is water stress or a disease/insect stress.

# As grapes approach **ripeness this phase relationship may invert** (become directly proportional)

- the canopy temperatures decrease and the vigor (leaf greenness) also decreases.



### **Thermal (far-IR) Imaging Daytime Warm-Up**

95° 90° 85° 80°



Infrared (IR =  $8-14\mu m$ )



#### 11 July 2008 Salinas Valley, WestSide

#### **0930 Environment**

airtemp - 64° grndtemp - 73° leaftemp - 64° wind – calm sky - 10/10 low stratus vsby - 5mi]

#### **1230 Environment**

airtemp - 74° grndtemp - 96° sun / 79°shade leaftemp – 83° - 90° sunside wind - ~04/020 sky - 0/10 vsby - 9mi



#### Near Infrared (nIR = .780µm = 780nm)

### Thermal (far-IR) Imaging **Temperature - Vigor Relationship**





#### Quality

- 70°F to 80°F favor the accumulation of malic acid
- above 100°F accumulation of malic acid is degraded
- accumulation of anthocyanin is repressed when temperatures above 86°F

#### Disease

- The primary factor that controls the spread of Powdery Mildew is temperature.
- fungus can multiply rapidly when temperatures are in the mid-60s to mid-80s
- inactive while temperatures remain above 90°F and some spores and colonies are killed after relatively short exposures above 95°F

#### Pests

• As the canopy temperatures increase above 86°F Pacific Spider Mites tend to bloom and at 95°F the rate of development is at a maximum



### Thermal (far-IR) Imaging Heat/Water Stress





### **Stress Scouting**

**Salinas Valley** 

1130 PDT, 23 July 09

Air Temp - 71°

Sky – 0/8 cover

**Vsby - unrestricted** 











## **Irrigation Scouting**

Salinas Valley 1500 PDT, 23 July 09 Air Temp - 74° Sky – 0/8 cover Vsby - unrestricted

Crop-Vu Optimize Progr Crop's Yield A Division of ItriCorp - No Beceslar











#### **Checking Drainage Planning Irrigation Strategies** http://www.crop-vu.com

18

### **Another Application for Thermal Imaging** Controlled Climate Building Audits

|   |                    | 8 - 0 - C                                                                                                       |                                                                                                                |  |
|---|--------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
|   |                    |                                                                                                                 |                                                                                                                |  |
|   |                    | the second se | and a second |  |
| 0 |                    |                                                                                                                 |                                                                                                                |  |
| 0 | Action             | \$\$\$ Impact<br>Approximate                                                                                    | % Impact<br>Approximate                                                                                        |  |
| 0 | Actionaccess doors |                                                                                                                 |                                                                                                                |  |
|   |                    | Approximate                                                                                                     | Approximate                                                                                                    |  |
| 0 | access doors       | Approximate \$4,700/Yr                                                                                          | Approximate > 1%                                                                                               |  |